Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents.
نویسندگان
چکیده
Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally restricted 14 aa peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested and pinned flat mucosal side up for in vitro single-fiber recordings, and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular, and muscular-mucosal; M/M) to probing and circumferential stretch studied. Both cGMP (10-300 μM) and uroguanylin (1-1000 nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and M/M afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and M/M afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on M/M afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization.
منابع مشابه
Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.
The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double ...
متن کاملCystitis increases colorectal afferent sensitivity in the mouse.
Studies in humans and rodents suggest that colon inflammation promotes urinary bladder hypersensitivity and, conversely, that cystitis contributes to colon hypersensitivity, events referred to as cross-organ sensitization. To investigate a potential peripheral mechanism, we examined whether cystitis alters the sensitivity of pelvic nerve colorectal afferents. Male C57BL/6 mice were treated with...
متن کاملDifferential roles of stretch-sensitive pelvic nerve afferents innervating mouse distal colon and rectum.
Information about colorectal distension (i.e., colorectal dilation by increased intraluminal pressure) is primarily encoded by stretch-sensitive colorectal afferents in the pelvic nerve (PN). Despite anatomic differences between rectum and distal colon, little is known about the functional roles of colonic vs. rectal afferents in the PN pathway or the quantitative nature of mechanosensory encod...
متن کاملAltered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice.
Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functio...
متن کاملExperimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.
Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 23 شماره
صفحات -
تاریخ انتشار 2013